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Algorithms & Data Structures Exercise sheet 3 HS 22

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 17 October 2022.

Exercises/questions marked by ∗ are “challenge exercises”. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 3.1 Some properties of O-Notation.

Let f : R+ → R+ and g : R+ → R+.

(a) Show that if f ≤ O(g), then f2 ≤ O(g2).

Solution:

Assume that f ≤ O(g). �en we can �nd T,C ∈ R+ such that for all x ≥ T , we have f(x) ≤
C · g(x). For all x ≥ T , we get f2(x) = f(x) · f(x) ≤ (C · g(x)) · (C · g(x)) = C2 · g2(x), hence
f2 ≤ O(g2).

(b) Does f ≤ O(g) imply 2f ≤ O(2g)? Prove it or provide a counterexample.

Solution:

�e implication does not hold.

Consider f(n) = 2n, g(n) = n. Obviously, f ≤ O(g). However,

lim
n→∞

2f(n)

2g(n)
= lim

n→∞

22n

2n
= lim

n→∞
2n =∞ ,

hence by �eorem 1 of Exercise sheet 1, 2f 6≤ O(2g).

Another important example is f(n) = log2 n and g(n) = log4 n. As we already showed, f ≤ O(g).
However, 2f(n) = n and 2g(n) =

√
n, so by �eorem 1 of Exercise sheet 1, 2f 6≤ O(2g).

Exercise 3.2 Substring counting (1 point).

Given a n-bit bitstring S (an array over {0, 1} of size n), and an integer k ≥ 0, we would like to count
the number of nonempty substrings of S with exactly k ones. For example, when S = “0110” and
k = 2, there are 4 such substrings: “011”, “11”, “110”, and “0110”.

(a) Design a “naive” algorithm that solves this problem with a runtime of O(n3). Justify its runtime
and correctness.

Solution:

We can for example use the following algorithm:



Algorithm 1 Naive substring counting
c← 0 . Initialize counter of substrings with k ones
for i← 0, . . . , n− 1 do . Enumerate all nonempty substrings S[i..j]

for j ← i, . . . , n− 1 do
x← 0 . Initialize counter of ones
for `← i, . . . , j do . Count ones in substring

if S[`] = 1 then
x← x + 1

if x = k then . If there are k ones in substring, increment c
c← c + 1

return c . Return number of substrings with k ones

We perform at most n iterations of each loop, leading to a total runtime in O(n3). �e correctness
directly follows from the description of the algorithm (see comments above).

(b) We say that a bitstring S′ is a (non-empty) pre�x of a bitstring S if S′ is of the form S[0..i] where
0 ≤ i < length(S). For example, the pre�xes of S = “0110” are “0”, “01”, “011” and “0110”.

Given a n-bit bitstring S, we would like to compute a table T indexed by 0..n such that for all i,
T [i] contains the number of pre�xes of S with exactly i ones.

For example, for S = “0110”, the desired table is T = [1, 1, 2, 0, 0], since, of the 4 pre�xes of S, 1
pre�x contains zero “1”, 1 pre�x contains one “1”, 2 pre�xes contain two “1”, and 0 pre�x contains
three “1” or four “1”.

Describe an algorithm prefixtable that computes T from S in time O(n), assuming S has size n.

Solution:

Algorithm 2
function prefixtable(S)

T ← int[n + 1]
s← 0
for i← 0, . . . , n− 1 do

s← s + S[i]
T [s]← T [s] + 1

return T

Remark: �is algorithm can also be applied on a reversed bitstring to compute the same table for
all su�xes of S. In the following, you can assume an algorithm suffixtable that does exactly this.

(c) Let S be a n-bit bitstring. Consider an integer m ∈ {0, . . . , n− 1}, and divide bitstring S into two
substrings S[0..m] and S[m+1..n−1]. Using prefixtable and suffixtable, describe an algorithm
spanning(m, k, S) that returns the number of substrings S[i..j] of S that have exactly k ones and
such that i ≤ m < j. What is its complexity?

For example, if S = “0110”, k = 2, and m = 0, there exist exactly two such strings: “011” and
“0110”. Hence, spanning(m, k, S) = 2.

Hint: Each substring S[i..j] with i ≤ m < j can be obtained by concatenating a string S[i..m] that
is a su�x of S[0..m] and a string S[m + 1..j] that is a pre�x of S[m + 1..n− 1].
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Solution:

Each substring S[i..j] with i ≤ m < j is obtained by concatenating a string S[i..m] that is a su�x
of S[0..m] and a string S[m+ 1..j] that is a pre�x of S[m+ 1..n−1], such that the numbers of “1”
in S[i..m] and S[m+ 1..j] sum up to k. Moreover, from each S[i..m] that contains p ≤ k ones, we
can build as many di�erent sequences S[i..j] with k ones as there are substrings S[m + 1..j] with
k − p ones. We obtain the following algorithm:

Algorithm 3
function spanning(m, k, S)

T1 ← suffixtable(S[0..m])
T2 ← prefixtable(S[m + 1..n− 1])

return
∑min(k,m)

p=max(0,k−(n−m−1))(T1[p] · T2[k − p])

�e complexity of this algorithm is O(n).

*(d) Using spanning, design an algorithm with a runtime of at most O(n log n) that counts the number
of nonempty substrings of a n-bit bitstring S with exactly k ones. (You can assume that n is a power
of two.)

Hint: Use the recursive idea from the lecture.

Solution:

Whenever n ≥ 2, we can distinguish between:

• Substrings with k ones located entirely in the �rst half of the bitstring, which we compute
recursively;

• Substrings with k ones located entirely in the second half of the bitstring, which we also
compute recursively;

• Substrings with k ones that span the two halves, which we can count using (c).

We obtain the following algorithm:

Algorithm 4 Clever substring counting
function countsubstr(S, k, i = 0, j = n− 1)

if i = j then
if k = 1 and S[i] = 1 then

return 1
else if k = 0 and S[i] = 0 then

return 1
else

return 0

else
m← b(i + j)/2c
return countsubstr(S, k, i,m) + countsubstr(S, k,m + 1, j) + spanning(m, k, S)

�e complexity of this algorithm is given by a recursive expression of the form A(n) = 2A(n2 ) +
O(n), which, as in the lecture, yields a total complexity of O(n log n).
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Exercise 3.3 Counting function calls in loops (1 point).

For each of the following code snippets, compute the number of calls to f as a function of n. Provide
both the exact number of calls and a maximally simpli�ed, tight asymptotic bound in big-O notation.

Algorithm 5
(a) f()

i← 0
while i ≤ n do

f()
i← i + 1

Solution:

�is algorithm performs 1 +
∑n

i=0 1 = 1 + (n + 1) = n + 2 = O(n) calls to f .

Algorithm 6
(b) i← 0

while i2 ≤ n do
f()
f()
for j ← 1, . . . , n do

f()

i← i + 1

Solution:

�is algorithm performs
∑b√nc

i=0 (2 + n) = (2 + n)(b
√
nc+ 1) = O(n1.5) calls to f .

Exercise 3.4 Fibonacci Revisited (1 point).

In this exercise we continue playing with the Fibonacci sequence.

(a) Write an O(n) algorithm that computes the nth Fibonacci number. As a reminder, Fibonacci num-
bers are a sequence de�ned as f0 = 0, f1 = 1, and fn+2 = fn+1 + fn for all integers n ≥ 0.

Remark: As shown in the last week’s exercise sheet, fn grows exponentially (e.g., at least as fast as
Ω(1.5n)). On a physical computer, working with these numbers o�en causes over�ow issues as they
exceed variables’ value limits. However, for this exercise, you can freely ignore any such issue and
assume we can safely do arithmetic on these numbers.

Solution:

Algorithm 7
F ← int[n + 1]
F [0]← 0
F [1]← 1
for i← 2, . . . , n do

F [i]← F [i− 2] + F [i− 1]

return F [n]
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At the end of iteration i of this algorithm, we have F [j] = fj for all 0 ≤ j ≤ i. Hence, at the end of
the last iteration, F [n] contains fn. Each of the n iterations has complexity O(1), yielding a total
complexity in O(n).

(b) Given an integer k ≥ 2, design an algorithm that computes the largest Fibonacci number fn such
that fn ≤ k. �e algorithm should have complexity O(log k). Prove this.

Remark: Typically we express runtime in terms of the size of the input n. In this exercise, the runtime
will be expressed in terms of the input value k.

Hint: Use the bound proved in 2.2.(b).

Solution:

Consider the following algorithm, where we can just assume for now that K is ‘large enough’ so
that no access outside of the valid index range of the array is performed.

Algorithm 8
F ← int[K]
F [0]← 0
F [1]← 1
i = 1
while F [i] ≤ k do

i← i + 1
F [i]← F [i− 2] + F [i− 1]

return F [i− 1]

A�er the ith iteration, we have F [j] = fj for all 0 ≤ j ≤ i. �e loop exists when the condition
F [i] = fi > k is satis�ed for the �rst time, and, in this case, F [i− 1] = fi is the largest Fibonacci
number smaller or equal to k. Using 2.2(b), we have k ≥ fi ≥ 1

3 ·1.5
i. We can rewrite k ≥ 1

3 ·1.5
i as

i ≤ ln1.5(3k) = ln 3+ln k
ln 1.5 ≤ 3(2 + ln k) = O(log k). Note that lnx denotes the natural logarithm;

we do not need to specify the base of the logarithm within O-notation since di�erent bases are
equivalent up to constants (and get hidden in the O-notation). �erefore, the inner while loop can
only execute O(log k) iterations. We can choose K = 3(2 + ln k).

*(c) Given an integer k ≥ 2, consider the following algorithm:

Algorithm 9
while k > 0 do

�nd the largest n such that fn ≤ k
k ← k − fn

Prove that the loop body is executed at most O(log k) times.

Hint: First, prove that fn−1 ≥ 1
2 · fn for all n.

Solution:
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We have that fk = fk−1 + fk−2 for all k ≥ 2. Using fk−2 ≤ fk−1 (for k ≥ 2) we have:

fk = fk−1 + fk−2

≤ fk−1 + fk−1

≤ 2 · fk−1.

�e last inequality one can be rewri�en as fk−1 ≥ 1
2fk.

A�er any single iteration of the outer while loop, the variable k is at least halved. Hence, by straight-
forward induction, it must be 0 a�er at most blog2 nc = O(log n) steps.

Exercise 3.5 Iterative squaring.

In this exercise you are going to develop an algorithm to compute powers an, with a ∈ Z and n ∈
N, e�ciently. For this exercise, we will treat multiplication of two integers as a single elementary
operation, i.e., for a, b ∈ Z you can compute a · b using one operation.

(a) Assume that n is even, and that you already know an algorithm An/2(a) that e�ciently computes
an/2, i.e., An/2(a) = an/2. Given the algorithm An/2, design an e�cient algorithm An(a) that
computes an.

Solution:

Algorithm 10 An(a)

x← An/2(a)

return x · x

(b) Let n = 2k, for k ∈ N0. Find an algorithm that computes an e�ciently. Describe your algorithm
using pseudo-code.

Solution:

Algorithm 11 Power(a, n)

if n = 1 then
return a

else
x← Power(a, n/2)
return x · x

(c) Determine the number of elementary operations (i.e., integer multiplications) required by your
algorithm for part b) in O-notation. You may assume that bookkeeping operations don’t cost any-
thing. �is includes handling of counters, computing n/2 from n, etc.

Solution:

Let T (n) be the number of elementary operations that the algorithm from part b) performs on input
a, n. �en

T (n) ≤ T (n/2) + 1 ≤ T (n/4) + 2 ≤ T (n/8) + 3 ≤ . . . ≤ T (1) + log2 n ≤ O(log n) .
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(d) Let Power(a, n) denote your algorithm for the computation of an from part b). Prove the correctness
of your algorithm via mathematical induction for all n ∈ N that are powers of two.

In other words: show that Power(a, n) = an for all n ∈ N of the form n = 2k for some k ∈ N0.

Solution:

• Base Case.
Let k = 0. �en n = 1 and Power(a, n) = a = a1.

• Induction Hypothesis.
Assume that the property holds for some positive integer k. �at is, Power(a, 2k) = a2

k .

• Inductive Step.
We must show that the property holds for k + 1.

Power(a, 2k+1) = Power(a, 2k) · Power(a, 2k)
I.H.
= a2

k · a2k = a2
k+1

.

By the principle of mathematical induction, this is true for any integer k ≥ 0 and n = 2k.

*(e) Design an algorithm that can compute an for a general n ∈ N, i.e., n does not need to be a power
of two.

Hint: Generalize the idea from part a) to the case where n is odd, i.e., there exists k ∈ N such that
n = 2k + 1.

Solution:

Algorithm 12 Power(a, n)

if n = 1 then
return a

else
if n is odd then

x← Power(a, (n− 1)/2)
return x · x · a

else
x← Power(a, n/2)
return x · x
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