
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 10 October 2022
Markus Püschel, David Steurer
François Hublet, Goran Zuzic, Tommaso d’Orsi, Jingqiu Ding

Algorithms & Data Structures Exercise sheet 3 HS 22

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 17 October 2022.

Exercises/questions marked by ∗ are “challenge exercises”. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 3.1 Some properties of O-Notation.

Let f : R+ → R+ and g : R+ → R+.

(a) Show that if f ≤ O(g), then f2 ≤ O(g2).

Solution:

Assume that f ≤ O(g). �en we can �nd T,C ∈ R+ such that for all x ≥ T , we have f(x) ≤
C · g(x). For all x ≥ T , we get f2(x) = f(x) · f(x) ≤ (C · g(x)) · (C · g(x)) = C2 · g2(x), hence
f2 ≤ O(g2).

(b) Does f ≤ O(g) imply 2f ≤ O(2g)? Prove it or provide a counterexample.

Solution:

�e implication does not hold.

Consider f(n) = 2n, g(n) = n. Obviously, f ≤ O(g). However,

lim
n→∞

2f(n)

2g(n)
= lim

n→∞

22n

2n
= lim

n→∞
2n =∞ ,

hence by �eorem 1 of Exercise sheet 1, 2f 6≤ O(2g).

Another important example is f(n) = log2 n and g(n) = log4 n. As we already showed, f ≤ O(g).
However, 2f(n) = n and 2g(n) =

√
n, so by �eorem 1 of Exercise sheet 1, 2f 6≤ O(2g).

Exercise 3.2 Substring counting (1 point).

Given a n-bit bitstring S (an array over {0, 1} of size n), and an integer k ≥ 0, we would like to count
the number of nonempty substrings of S with exactly k ones. For example, when S = “0110” and
k = 2, there are 4 such substrings: “011”, “11”, “110”, and “0110”.

(a) Design a “naive” algorithm that solves this problem with a runtime of O(n3). Justify its runtime
and correctness.

Solution:

We can for example use the following algorithm:



Algorithm 1 Naive substring counting
c← 0 . Initialize counter of substrings with k ones
for i← 0, . . . , n− 1 do . Enumerate all nonempty substrings S[i..j]

for j ← i, . . . , n− 1 do
x← 0 . Initialize counter of ones
for `← i, . . . , j do . Count ones in substring

if S[`] = 1 then
x← x + 1

if x = k then . If there are k ones in substring, increment c
c← c + 1

return c . Return number of substrings with k ones

We perform at most n iterations of each loop, leading to a total runtime in O(n3). �e correctness
directly follows from the description of the algorithm (see comments above).

(b) We say that a bitstring S′ is a (non-empty) pre�x of a bitstring S if S′ is of the form S[0..i] where
0 ≤ i < length(S). For example, the pre�xes of S = “0110” are “0”, “01”, “011” and “0110”.

Given a n-bit bitstring S, we would like to compute a table T indexed by 0..n such that for all i,
T [i] contains the number of pre�xes of S with exactly i ones.

For example, for S = “0110”, the desired table is T = [1, 1, 2, 0, 0], since, of the 4 pre�xes of S, 1
pre�x contains zero “1”, 1 pre�x contains one “1”, 2 pre�xes contain two “1”, and 0 pre�x contains
three “1” or four “1”.

Describe an algorithm prefixtable that computes T from S in time O(n), assuming S has size n.

Solution:

Algorithm 2
function prefixtable(S)

T ← int[n + 1]
s← 0
for i← 0, . . . , n− 1 do

s← s + S[i]
T [s]← T [s] + 1

return T

Remark: �is algorithm can also be applied on a reversed bitstring to compute the same table for
all su�xes of S. In the following, you can assume an algorithm suffixtable that does exactly this.

(c) Let S be a n-bit bitstring. Consider an integer m ∈ {0, . . . , n− 1}, and divide bitstring S into two
substrings S[0..m] and S[m+1..n−1]. Using prefixtable and suffixtable, describe an algorithm
spanning(m, k, S) that returns the number of substrings S[i..j] of S that have exactly k ones and
such that i ≤ m < j. What is its complexity?

For example, if S = “0110”, k = 2, and m = 0, there exist exactly two such strings: “011” and
“0110”. Hence, spanning(m, k, S) = 2.

Hint: Each substring S[i..j] with i ≤ m < j can be obtained by concatenating a string S[i..m] that
is a su�x of S[0..m] and a string S[m + 1..j] that is a pre�x of S[m + 1..n− 1].

2



Solution:

Each substring S[i..j] with i ≤ m < j is obtained by concatenating a string S[i..m] that is a su�x
of S[0..m] and a string S[m+ 1..j] that is a pre�x of S[m+ 1..n−1], such that the numbers of “1”
in S[i..m] and S[m+ 1..j] sum up to k. Moreover, from each S[i..m] that contains p ≤ k ones, we
can build as many di�erent sequences S[i..j] with k ones as there are substrings S[m + 1..j] with
k − p ones. We obtain the following algorithm:

Algorithm 3
function spanning(m, k, S)

T1 ← suffixtable(S[0..m])
T2 ← prefixtable(S[m + 1..n− 1])

return
∑min(k,m)

p=max(0,k−(n−m−1))(T1[p] · T2[k − p])

�e complexity of this algorithm is O(n).

*(d) Using spanning, design an algorithm with a runtime of at most O(n log n) that counts the number
of nonempty substrings of a n-bit bitstring S with exactly k ones. (You can assume that n is a power
of two.)

Hint: Use the recursive idea from the lecture.

Solution:

Whenever n ≥ 2, we can distinguish between:

• Substrings with k ones located entirely in the �rst half of the bitstring, which we compute
recursively;

• Substrings with k ones located entirely in the second half of the bitstring, which we also
compute recursively;

• Substrings with k ones that span the two halves, which we can count using (c).

We obtain the following algorithm:

Algorithm 4 Clever substring counting
function countsubstr(S, k, i = 0, j = n− 1)

if i = j then
if k = 1 and S[i] = 1 then

return 1
else if k = 0 and S[i] = 0 then

return 1
else

return 0

else
m← b(i + j)/2c
return countsubstr(S, k, i,m) + countsubstr(S, k,m + 1, j) + spanning(m, k, S)

�e complexity of this algorithm is given by a recursive expression of the form A(n) = 2A(n2 ) +
O(n), which, as in the lecture, yields a total complexity of O(n log n).

3



Exercise 3.3 Counting function calls in loops (1 point).

For each of the following code snippets, compute the number of calls to f as a function of n. Provide
both the exact number of calls and a maximally simpli�ed, tight asymptotic bound in big-O notation.

Algorithm 5
(a) f()

i← 0
while i ≤ n do

f()
i← i + 1

Solution:

�is algorithm performs 1 +
∑n

i=0 1 = 1 + (n + 1) = n + 2 = O(n) calls to f .

Algorithm 6
(b) i← 0

while i2 ≤ n do
f()
f()
for j ← 1, . . . , n do

f()

i← i + 1

Solution:

�is algorithm performs
∑b√nc

i=0 (2 + n) = (2 + n)(b
√
nc+ 1) = O(n1.5) calls to f .

Exercise 3.4 Fibonacci Revisited (1 point).

In this exercise we continue playing with the Fibonacci sequence.

(a) Write an O(n) algorithm that computes the nth Fibonacci number. As a reminder, Fibonacci num-
bers are a sequence de�ned as f0 = 0, f1 = 1, and fn+2 = fn+1 + fn for all integers n ≥ 0.

Remark: As shown in the last week’s exercise sheet, fn grows exponentially (e.g., at least as fast as
Ω(1.5n)). On a physical computer, working with these numbers o�en causes over�ow issues as they
exceed variables’ value limits. However, for this exercise, you can freely ignore any such issue and
assume we can safely do arithmetic on these numbers.

Solution:

Algorithm 7
F ← int[n + 1]
F [0]← 0
F [1]← 1
for i← 2, . . . , n do

F [i]← F [i− 2] + F [i− 1]

return F [n]

4



At the end of iteration i of this algorithm, we have F [j] = fj for all 0 ≤ j ≤ i. Hence, at the end of
the last iteration, F [n] contains fn. Each of the n iterations has complexity O(1), yielding a total
complexity in O(n).

(b) Given an integer k ≥ 2, design an algorithm that computes the largest Fibonacci number fn such
that fn ≤ k. �e algorithm should have complexity O(log k). Prove this.

Remark: Typically we express runtime in terms of the size of the input n. In this exercise, the runtime
will be expressed in terms of the input value k.

Hint: Use the bound proved in 2.2.(b).

Solution:

Consider the following algorithm, where we can just assume for now that K is ‘large enough’ so
that no access outside of the valid index range of the array is performed.

Algorithm 8
F ← int[K]
F [0]← 0
F [1]← 1
i = 1
while F [i] ≤ k do

i← i + 1
F [i]← F [i− 2] + F [i− 1]

return F [i− 1]

A�er the ith iteration, we have F [j] = fj for all 0 ≤ j ≤ i. �e loop exists when the condition
F [i] = fi > k is satis�ed for the �rst time, and, in this case, F [i− 1] = fi is the largest Fibonacci
number smaller or equal to k. Using 2.2(b), we have k ≥ fi ≥ 1

3 ·1.5
i. We can rewrite k ≥ 1

3 ·1.5
i as

i ≤ ln1.5(3k) = ln 3+ln k
ln 1.5 ≤ 3(2 + ln k) = O(log k). Note that lnx denotes the natural logarithm;

we do not need to specify the base of the logarithm within O-notation since di�erent bases are
equivalent up to constants (and get hidden in the O-notation). �erefore, the inner while loop can
only execute O(log k) iterations. We can choose K = 3(2 + ln k).

*(c) Given an integer k ≥ 2, consider the following algorithm:

Algorithm 9
while k > 0 do

�nd the largest n such that fn ≤ k
k ← k − fn

Prove that the loop body is executed at most O(log k) times.

Hint: First, prove that fn−1 ≥ 1
2 · fn for all n.

Solution:

5



We have that fk = fk−1 + fk−2 for all k ≥ 2. Using fk−2 ≤ fk−1 (for k ≥ 2) we have:

fk = fk−1 + fk−2

≤ fk−1 + fk−1

≤ 2 · fk−1.

�e last inequality one can be rewri�en as fk−1 ≥ 1
2fk.

A�er any single iteration of the outer while loop, the variable k is at least halved. Hence, by straight-
forward induction, it must be 0 a�er at most blog2 nc = O(log n) steps.

Exercise 3.5 Iterative squaring.

In this exercise you are going to develop an algorithm to compute powers an, with a ∈ Z and n ∈
N, e�ciently. For this exercise, we will treat multiplication of two integers as a single elementary
operation, i.e., for a, b ∈ Z you can compute a · b using one operation.

(a) Assume that n is even, and that you already know an algorithm An/2(a) that e�ciently computes
an/2, i.e., An/2(a) = an/2. Given the algorithm An/2, design an e�cient algorithm An(a) that
computes an.

Solution:

Algorithm 10 An(a)

x← An/2(a)

return x · x

(b) Let n = 2k, for k ∈ N0. Find an algorithm that computes an e�ciently. Describe your algorithm
using pseudo-code.

Solution:

Algorithm 11 Power(a, n)

if n = 1 then
return a

else
x← Power(a, n/2)
return x · x

(c) Determine the number of elementary operations (i.e., integer multiplications) required by your
algorithm for part b) in O-notation. You may assume that bookkeeping operations don’t cost any-
thing. �is includes handling of counters, computing n/2 from n, etc.

Solution:

Let T (n) be the number of elementary operations that the algorithm from part b) performs on input
a, n. �en

T (n) ≤ T (n/2) + 1 ≤ T (n/4) + 2 ≤ T (n/8) + 3 ≤ . . . ≤ T (1) + log2 n ≤ O(log n) .

6



(d) Let Power(a, n) denote your algorithm for the computation of an from part b). Prove the correctness
of your algorithm via mathematical induction for all n ∈ N that are powers of two.

In other words: show that Power(a, n) = an for all n ∈ N of the form n = 2k for some k ∈ N0.

Solution:

• Base Case.
Let k = 0. �en n = 1 and Power(a, n) = a = a1.

• Induction Hypothesis.
Assume that the property holds for some positive integer k. �at is, Power(a, 2k) = a2

k .

• Inductive Step.
We must show that the property holds for k + 1.

Power(a, 2k+1) = Power(a, 2k) · Power(a, 2k)
I.H.
= a2

k · a2k = a2
k+1

.

By the principle of mathematical induction, this is true for any integer k ≥ 0 and n = 2k.

*(e) Design an algorithm that can compute an for a general n ∈ N, i.e., n does not need to be a power
of two.

Hint: Generalize the idea from part a) to the case where n is odd, i.e., there exists k ∈ N such that
n = 2k + 1.

Solution:

Algorithm 12 Power(a, n)

if n = 1 then
return a

else
if n is odd then

x← Power(a, (n− 1)/2)
return x · x · a

else
x← Power(a, n/2)
return x · x

7


